Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Host Microbe ; 32(4): 606-622.e8, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38479396

RESUMO

Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes acute, subacute, and chronic human arthritogenic diseases and, in rare instances, can lead to neurological complications and death. Here, we combined epidemiological, virological, histopathological, cytokine, molecular dynamics, metabolomic, proteomic, and genomic analyses to investigate viral and host factors that contribute to chikungunya-associated (CHIK) death. Our results indicate that CHIK deaths are associated with multi-organ infection, central nervous system damage, and elevated serum levels of pro-inflammatory cytokines and chemokines compared with survivors. The histopathologic, metabolite, and proteomic signatures of CHIK deaths reveal hemodynamic disorders and dysregulated immune responses. The CHIKV East-Central-South-African lineage infecting our study population causes both fatal and survival cases. Additionally, CHIKV infection impairs the integrity of the blood-brain barrier, as evidenced by an increase in permeability and altered tight junction protein expression. Overall, our findings improve the understanding of CHIK pathophysiology and the causes of fatal infections.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Animais , Humanos , Febre de Chikungunya/complicações , Proteômica , Vírus Chikungunya/genética , Citocinas/metabolismo
2.
Elife ; 122023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37523305

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the agent of a major global outbreak of respiratory tract disease known as Coronavirus Disease 2019 (COVID-19). SARS-CoV-2 infects mainly lungs and may cause several immune-related complications, such as lymphocytopenia and cytokine storm, which are associated with the severity of the disease and predict mortality. The mechanism by which SARS-CoV-2 infection may result in immune system dysfunction is still not fully understood. Here, we show that SARS-CoV-2 infects human CD4+ T helper cells, but not CD8+ T cells, and is present in blood and bronchoalveolar lavage T helper cells of severe COVID-19 patients. We demonstrated that SARS-CoV-2 spike glycoprotein (S) directly binds to the CD4 molecule, which in turn mediates the entry of SARS- CoV-2 in T helper cells. This leads to impaired CD4 T cell function and may cause cell death. SARS-CoV-2-infected T helper cells express higher levels of IL-10, which is associated with viral persistence and disease severity. Thus, CD4-mediated SARS-CoV-2 infection of T helper cells may contribute to a poor immune response in COVID-19 patients.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Linfócitos T CD8-Positivos , Linfócitos T Auxiliares-Indutores , Pulmão
3.
Lancet Microbe ; 4(5): e319-e329, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37031687

RESUMO

BACKGROUND: Chikungunya virus (CHIKV) is an Aedes mosquito-borne virus that has caused large epidemics linked to acute, chronic, and severe clinical outcomes. Currently, Brazil has the highest number of chikungunya cases in the Americas. We aimed to investigate the spatiotemporal dynamics and recurrence pattern of chikungunya in Brazil since its introduction in 2013. METHODS: In this epidemiological study, we used CHIKV genomic sequencing data, CHIKV vector information, and aggregate clinical data on chikungunya cases from Brazil. The genomic data comprised 241 Brazilian CHIKV genome sequences from GenBank (n=180) and the 2022 CHIKV outbreak in Ceará state (n=61). The vector data (Breteau index and House index) were obtained from the Brazilian Ministry of Health for all 184 municipalities in Ceará state and 116 municipalities in Tocantins state in 2022. Epidemiological data on laboratory-confirmed cases of chikungunya between 2013 and 2022 were obtained from the Brazilian Ministry of Health and Laboratory of Public Health of Ceará. We assessed the spatiotemporal dynamics of chikungunya in Brazil via time series, mapping, age-sex distribution, cumulative case-fatality, linear correlation, logistic regression, and phylogenetic analyses. FINDINGS: Between March 3, 2013, and June 4, 2022, 253 545 laboratory-confirmed chikungunya cases were reported in 3316 (59·5%) of 5570 municipalities, mainly distributed in seven epidemic waves from 2016 to 2022. To date, Ceará in the northeast has been the most affected state, with 77 418 cases during the two largest epidemic waves in 2016 and 2017 and the third wave in 2022. From 2016 to 2022 in Ceará, the odds of being CHIKV-positive were higher in females than in males (odds ratio 0·87, 95% CI 0·85-0·89, p<0·0001), and the cumulative case-fatality ratio was 1·3 deaths per 1000 cases. Chikungunya recurrences in the states of Ceará, Tocantins (recurrence in 2022), and Pernambuco (recurrence in 2021) were limited to municipalities with few or no previously reported cases in the previous epidemic waves. The recurrence of chikungunya in Ceará in 2022 was associated with a new East-Central-South-African lineage. Population density metrics of the main CHIKV vector in Brazil, Aedes aegypti, were not correlated spatially with locations of chikungunya recurrence in Ceará and Tocantins. INTERPRETATION: Spatial heterogeneity of CHIKV spread and population immunity might explain the recurrence pattern of chikungunya in Brazil. These results can be used to inform public health interventions to prevent future chikungunya epidemic waves in urban settings. FUNDING: Global Virus Network, Burroughs Wellcome Fund, Wellcome Trust, US National Institutes of Health, São Paulo Research Foundation, Brazil Ministry of Education, UK Medical Research Council, Brazilian National Council for Scientific and Technological Development, and UK Royal Society. TRANSLATION: For the Portuguese translation of the abstract see Supplementary Materials section.


Assuntos
Aedes , Febre de Chikungunya , Vírus Chikungunya , Masculino , Animais , Feminino , Humanos , Vírus Chikungunya/genética , Febre de Chikungunya/epidemiologia , Brasil/epidemiologia , Filogenia , Mosquitos Vetores , Estudos Epidemiológicos
4.
Viruses ; 15(4)2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-37112998

RESUMO

Numerous studies have focused on inflammation-related markers to understand COVID-19. In this study, we performed a comparative analysis of spike (S) and nucleocapsid (N) protein-specific IgA, total IgG and IgG subclass response in COVID-19 patients and compared this to their disease outcome. We observed that the SARS-CoV-2 infection elicits a robust IgA and IgG response against the N-terminal (N1) and C-terminal (N3) region of the N protein, whereas we failed to detect IgA antibodies and observed a weak IgG response against the disordered linker region (N2) in COVID-19 patients. N and S protein-specific IgG1, IgG2 and IgG3 response was significantly elevated in hospitalized patients with severe disease compared to outpatients with non-severe disease. IgA and total IgG antibody reactivity gradually increased after the first week of symptoms. Magnitude of RBD-ACE2 blocking antibodies identified in a competitive assay and neutralizing antibodies detected by PRNT assay correlated with disease severity. Generally, the IgA and total IgG response between the discharged and deceased COVID-19 patients was similar. However, significant differences in the ratio of IgG subclass antibodies were observed between discharged and deceased patients, especially towards the disordered linker region of the N protein. Overall, SARS-CoV-2 infection is linked to an elevated blood antibody response in severe patients compared to non-severe patients. Monitoring of antigen-specific serological response could be an important tool to accompany disease progression and improve outcomes.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Anticorpos Antivirais , Imunoglobulina G , Imunoglobulina A , Imunoglobulina M , Glicoproteína da Espícula de Coronavírus
5.
Exp Biol Med (Maywood) ; 248(10): 874-882, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36941802

RESUMO

The duration and protectiveness of antibodies against SARS-CoV-2 in infected subjects are still uncertain; nonetheless, anti-S-specific antibodies can contribute to protective immunity against new infections. It has been described that the level of antibodies produced in COVID-19 is related to the severity of symptoms, and the majority of the humoral response studies have been conducted in hospitalized patients who have been, then, followed over time. However, about 80% of SARS-CoV-2 infections in unvaccinated people are mild to asymptomatic, and this percentage reaches more than 95% in vaccinated individuals. Therefore, understanding the long-term dynamics of the antibody responses in this predominant part of the COVID-19-affected population is essential. In this study, we followed a cohort of individuals with mild COVID-19 who did not require hospitalization. We collected blood samples at sequential times after the SARS-CoV-2-positive qRT-PCR result. From 65 recruited patients, 50 had detectable antibodies at screening. Anti-SARS-CoV-2 IgM levels peaked around two weeks post-COVID-19 diagnostics, becoming undetectable after 65 days. IgG levels reached a peak in approximately one month and remained detectable for more than one year. In contrast to the levels of anti-SARS-CoV-2, antibody neutralization potency indexes persisted over time. In this study, humoral responses in mild COVID-19 patients persisted for more than one year. This is an important long-term follow-up study that includes responses from COVID-19 patients before and after vaccination, a scenery that has become increasingly difficult to evaluate due to the growing vaccination of the world human population.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Seguimentos , Estudos Longitudinais , Imunoglobulina M , Anticorpos Antivirais , Anticorpos Neutralizantes , Imunidade Humoral
6.
Int J Infect Dis ; 129: 142-151, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36736575

RESUMO

OBJECTIVES: Several Flaviviruses can co-circulate. Pre-existing immunity to one virus can modulate the response to a heterologous virus; however, the serological cross-reaction between these emerging viruses in dengue virus (DENV)-endemic regions are poorly understood. METHODS: A cross-sectional study was performed among the residents of Manaus city in the state of Amazonas, Brazil. The serological response was assessed by hemagglutination inhibition assay (HIA), enzyme-linked immunosorbent assay, and neutralization assay. RESULTS: A total of 74.52% of the participants were immunoglobulin G-positive (310/416), as estimated by lateral flow tests. Overall, 93.7% of the participants were seropositive (419/447) for at least one DENV serotype, and the DENV seropositivity ranged between 84.8% and 91.0%, as determined by HIA. About 93% had antiyellow fever virus 17D-reactive antibodies, whereas 80.5% reacted to wild-type yellow fever virus. Zika virus (ZIKV) had the lowest seropositivity percentage (52.6%) compared with other Flaviviruses. Individuals who were DENV-positive with high antibody titers by HIA or envelope protein domain III enzyme-linked immunosorbent assay reacted strongly with ZIKV, whereas individuals with low anti-DENV antibody titers reacted poorly toward ZIKV. Live virus neutralization assay with ZIKV confirmed that dengue serogroup and ZIKV-spondweni serogroup are far apart; hence, individuals who are DENV-positive do not cross-neutralize ZIKV efficiently. CONCLUSION: Taken together, we observed a high prevalence of DENV in the Manaus-Amazon region and a varying degree of cross-reactivity against emerging and endemic Flaviviruses. Epidemiological and exposure conditions in Manaus make its population susceptible to emerging and endemic arboviruses.


Assuntos
Vírus da Dengue , Dengue , Flavivirus , Infecção por Zika virus , Zika virus , Humanos , Infecção por Zika virus/epidemiologia , Brasil/epidemiologia , Dengue/epidemiologia , Estudos Transversais , Anticorpos Antivirais , Ensaio de Imunoadsorção Enzimática , Reações Cruzadas
7.
Proc Natl Acad Sci U S A ; 119(35): e2200960119, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35951647

RESUMO

Although increasing evidence confirms neuropsychiatric manifestations associated mainly with severe COVID-19 infection, long-term neuropsychiatric dysfunction (recently characterized as part of "long COVID-19" syndrome) has been frequently observed after mild infection. We show the spectrum of cerebral impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, ranging from long-term alterations in mildly infected individuals (orbitofrontal cortical atrophy, neurocognitive impairment, excessive fatigue and anxiety symptoms) to severe acute damage confirmed in brain tissue samples extracted from the orbitofrontal region (via endonasal transethmoidal access) from individuals who died of COVID-19. In an independent cohort of 26 individuals who died of COVID-19, we used histopathological signs of brain damage as a guide for possible SARS-CoV-2 brain infection and found that among the 5 individuals who exhibited those signs, all of them had genetic material of the virus in the brain. Brain tissue samples from these five patients also exhibited foci of SARS-CoV-2 infection and replication, particularly in astrocytes. Supporting the hypothesis of astrocyte infection, neural stem cell-derived human astrocytes in vitro are susceptible to SARS-CoV-2 infection through a noncanonical mechanism that involves spike-NRP1 interaction. SARS-CoV-2-infected astrocytes manifested changes in energy metabolism and in key proteins and metabolites used to fuel neurons, as well as in the biogenesis of neurotransmitters. Moreover, human astrocyte infection elicits a secretory phenotype that reduces neuronal viability. Our data support the model in which SARS-CoV-2 reaches the brain, infects astrocytes, and consequently, leads to neuronal death or dysfunction. These deregulated processes could contribute to the structural and functional alterations seen in the brains of COVID-19 patients.


Assuntos
Encéfalo , COVID-19 , Viroses do Sistema Nervoso Central , SARS-CoV-2 , Astrócitos/patologia , Astrócitos/virologia , Encéfalo/patologia , Encéfalo/virologia , COVID-19/complicações , COVID-19/patologia , Viroses do Sistema Nervoso Central/etiologia , Viroses do Sistema Nervoso Central/patologia , Humanos , Síndrome Pós-COVID-19 Aguda
8.
Cells ; 11(16)2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-36010648

RESUMO

Clinical and experimental data indicate that severe acute respiratory syndrome coronavirus (SARS-CoV)-2 infection is associated with significant changes in the composition and function of intestinal microbiota. However, the relevance of these effects for SARS-CoV-2 pathophysiology is unknown. In this study, we analyzed the impact of microbiota depletion after antibiotic treatment on the clinical and immunological responses of K18-hACE2 mice to SARS-CoV-2 infection. Mice were treated with a combination of antibiotics (kanamycin, gentamicin, metronidazole, vancomycin, and colistin, Abx) for 3 days, and 24 h later, they were infected with SARS-CoV-2 B lineage. Here, we show that more than 80% of mice succumbed to infection by day 11 post-infection. Treatment with Abx had no impact on mortality. However, Abx-treated mice presented better clinical symptoms, with similar weight loss between infected-treated and non-treated groups. We observed no differences in lung and colon histopathological scores or lung, colon, heart, brain and kidney viral load between groups on day 5 of infection. Despite some minor differences in the expression of antiviral and inflammatory markers in the lungs and colon, no robust change was observed in Abx-treated mice. Together, these findings indicate that microbiota depletion has no impact on SARS-CoV-2 infection in mice.


Assuntos
Tratamento Farmacológico da COVID-19 , Microbiota , Enzima de Conversão de Angiotensina 2 , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Modelos Animais de Doenças , Melfalan , Camundongos , Camundongos Transgênicos , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2 , gama-Globulinas
9.
Virulence ; 13(1): 1031-1048, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35734825

RESUMO

The ongoing COVID-19 pandemic caused a significant loss of human lives and a worldwide decline in quality of life. Treatment of COVID-19 patients is challenging, and specific treatments to reduce COVID-19 aggravation and mortality are still necessary. Here, we describe the discovery of a novel class of epiandrosterone steroidal compounds with cationic amphiphilic properties that present antiviral activity against SARS-CoV-2 in the low micromolar range. Compounds were identified in screening campaigns using a cytopathic effect-based assay in Vero CCL81 cells, followed by hit compound validation and characterization. Compounds LNB167 and LNB169 were selected due to their ability to reduce the levels of infectious viral progeny and viral RNA levels in Vero CCL81, HEK293, and HuH7.5 cell lines. Mechanistic studies in Vero CCL81 cells indicated that LNB167 and LNB169 inhibited the initial phase of viral replication through mechanisms involving modulation of membrane lipids and cholesterol in host cells. Selection of viral variants resistant to steroidal compound treatment revealed single mutations on transmembrane, lipid membrane-interacting Spike and Envelope proteins. Finally, in vivo testing using the hACE2 transgenic mouse model indicated that SARS-CoV-2 infection could not be ameliorated by LNB167 treatment. We conclude that anti-SARS-CoV-2 activities of steroidal compounds LNB167 and LNB169 are likely host-targeted, consistent with the properties of cationic amphiphilic compounds that modulate host cell lipid biology. Although effective in vitro, protective effects were cell-type specific and did not translate to protection in vivo, indicating that subversion of lipid membrane physiology is an important, yet complex mechanism involved in SARS-CoV-2 replication and pathogenesis.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Animais , Antivirais/farmacologia , Chlorocebus aethiops , Células HEK293 , Humanos , Lipídeos , Camundongos , Pandemias , Qualidade de Vida , Células Vero , Replicação Viral
10.
Front Cell Infect Microbiol ; 12: 849017, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677658

RESUMO

SARS-CoV-2 is an emerging virus from the Coronaviridae family and is responsible for the ongoing COVID-19 pandemic. In this work, we explored the previously reported SARS-CoV-2 structural membrane protein (M) interaction with human Proliferating Cell Nuclear Antigen (PCNA). The M protein is responsible for maintaining virion shape, and PCNA is a marker of DNA damage which is essential for DNA replication and repair. We validated the M-PCNA interaction through immunoprecipitation, immunofluorescence co-localization, and PLA (Proximity Ligation Assay). In cells infected with SARS-CoV-2 or transfected with M protein, using immunofluorescence and cell fractioning, we documented a reallocation of PCNA from the nucleus to the cytoplasm and the increase of PCNA and γH2AX (another DNA damage marker) expression. We also observed an increase in PCNA and γH2AX expression in the lung of a COVID-19 patient by immunohistochemistry. In addition, the inhibition of PCNA translocation by PCNA I1 and Verdinexor led to a reduction of plaque formation in an in vitro assay. We, therefore, propose that the transport of PCNA to the cytoplasm and its association with M could be a virus strategy to manipulate cell functions and may be considered a target for COVID-19 therapy.


Assuntos
Tratamento Farmacológico da COVID-19 , Proteínas M de Coronavírus , Antígeno Nuclear de Célula em Proliferação , Proteínas M de Coronavírus/metabolismo , Humanos , Antígeno Nuclear de Célula em Proliferação/metabolismo , SARS-CoV-2
11.
Viruses ; 14(5)2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35632784

RESUMO

Currently, there are no evidence-based treatment options for long COVID-19, and it is known that SARS-CoV-2 can persist in part of the infected patients, especially those with immunosuppression. Since there is a robust secretion of SARS-CoV-2-specific highly-neutralizing IgA antibodies in breast milk, and because this immunoglobulin plays an essential role against respiratory virus infection in mucosa cells, being, in addition, more potent in neutralizing SARS-CoV-2 than IgG, here we report the clinical course of an NFκB-deficient patient chronically infected with the SARS-CoV-2 Gamma variant, who, after a non-full effective treatment with plasma infusion, received breast milk from a vaccinated mother by oral route as treatment for COVID-19. After such treatment, the symptoms improved, and the patient was systematically tested negative for SARS-CoV-2. Thus, we hypothesize that IgA and IgG secreted antibodies present in breast milk could be useful to treat persistent SARS-CoV-2 infection in immunodeficient patients.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , COVID-19/complicações , Ingestão de Alimentos , Feminino , Humanos , Imunoglobulina A , Imunoglobulina G , Leite Humano , NF-kappa B , RNA Viral , SARS-CoV-2/genética , Síndrome Pós-COVID-19 Aguda
12.
Viruses ; 14(3)2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35336917

RESUMO

Previous studies have indicated that antibody responses can be robustly induced after the vaccination in individuals previously infected by SARS-CoV-2. To evaluate anti-SARS-CoV-2 humoral responses in vaccinated individuals with or without a previous history of COVID-19, we compared levels of anti-SARS-CoV-2 antibodies in the sera from 21 vaccinees, including COVID-19-recovered or -naïve individuals in different times, before and after immunization with an inactivated COVID-19 vaccine. Anti-SARS-CoV-2-specific antibodies elicited after COVID-19 and/or immunization with an inactivated vaccine were measured by ELISA and Plaque Reduction Neutralizing assays. Antibody kinetics were consistently different between the two vaccine doses for naïve individuals, contrasting with the SARS-CoV-2-recovered subjects in which we observed no additional increase in antibody levels following the second dose. Sera from SARS-CoV2-naïve individuals had no detectable neutralizing activity against lineage B.1 SARS-CoV-2 or Gamma variant five months after the second vaccine dose. Contrarily, SARS-CoV-2-recovered subjects retained considerable neutralizing activity against both viruses. We conclude that a single inactivated SARS-CoV-2 vaccine dose may be sufficient to induce protective antibody responses in individuals with previous history of SARS-CoV-2 infection.


Assuntos
COVID-19 , Vacinas Virais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , RNA Viral , SARS-CoV-2
13.
Curr Issues Mol Biol ; 45(1): 327-336, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36661509

RESUMO

The COVID-19 (Coronavirus Disease 2019), caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), severely affects mainly individuals with pre-existing comorbidities. Here our aim was to correlate the mTOR (mammalian/mechanistic Target of Rapamycin) and autophagy pathways with the disease severity. Through western blotting and RNA analysis, we found increased mTOR signaling and suppression of genes related to autophagy, lysosome, and vesicle fusion in Vero E6 cells infected with SARS-CoV-2 as well as in transcriptomic data mining of bronchoalveolar epithelial cells from severe COVID-19 patients. Immunofluorescence co-localization assays also indicated that SARS-CoV-2 colocalizes within autophagosomes but not with a lysosomal marker. Our findings indicate that SARS-CoV-2 can benefit from compromised autophagic flux and inhibited exocytosis in individuals with chronic hyperactivation of mTOR signaling.

14.
Viruses ; 13(11)2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34834934

RESUMO

A SARS-CoV-2 B.1.1.7 variant of concern (VOC) has been associated with increased transmissibility, hospitalization, and mortality. This study aimed to explore the factors associated with B.1.1.7 VOC infection in the context of vaccination. On March 2021, we detected SARS-CoV-2 RNA in nasopharyngeal samples from 14 of 22 individuals vaccinated with a single-dose of ChAdOx1 (outbreak A, n = 26), and 22 of 42 of individuals with two doses of the CoronaVac vaccine (outbreak B, n = 52) for breakthrough infection rates for ChAdOx1 of 63.6% and 52.4% for CoronaVac. The outbreaks were caused by two independent clusters of the B.1.1.7 VOC. The serum of PCR-positive symptomatic SARS-CoV-2-infected individuals had ~1.8-3.4-fold more neutralizing capacity against B.1.1.7 compared to the serum of asymptomatic individuals. These data based on exploratory analysis suggest that the B.1.1.7 variant can infect individuals partially immunized with a single dose of an adenovirus-vectored vaccine or fully immunized with two doses of an inactivated vaccine, although the vaccines were able to reduce the risk of severe disease and death caused by this VOC, even in the elderly.


Assuntos
Vacinas contra COVID-19 , COVID-19/imunologia , COVID-19/virologia , SARS-CoV-2/classificação , SARS-CoV-2/genética , Vacinação , Adenoviridae , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Neutralizantes/imunologia , Brasil/epidemiologia , COVID-19/prevenção & controle , Teste Sorológico para COVID-19 , Estudos de Coortes , Surtos de Doenças/estatística & dados numéricos , Feminino , Vetores Genéticos , Humanos , Imunoglobulina G/sangue , Masculino , Pessoa de Meia-Idade , RNA Viral , Vacinas de Produtos Inativados , Sequenciamento Completo do Genoma , Adulto Jovem
15.
Brain Behav Immun ; 97: 260-274, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34390806

RESUMO

Zika virus (ZIKV) has the ability to cross placental and brain barriers, causing congenital malformations in neonates and neurological disorders in adults. However, the pathogenic mechanisms of ZIKV-induced neurological complications in adults and congenital malformations are still not fully understood. Gas6 is a soluble TAM receptor ligand able to promote flavivirus internalization and downregulation of immune responses. Here we demonstrate that there is a correlation between ZIKV neurological complications with higher Gas6 levels and the downregulation of genes associated with anti-viral response, as type I IFN due to Socs1 upregulation. Also, Gas6 gamma-carboxylation is essential for ZIKV invasion and replication in monocytes, the main source of this protein, which was inhibited by warfarin. Conversely, Gas6 facilitates ZIKV replication in adult immunocompetent mice and enabled susceptibility to transplacental infection. Our data indicate that ZIKV promotes the upregulation of its ligand Gas6, which contributes to viral infectivity and drives the development of severe adverse outcomes during ZIKV infection.


Assuntos
Doenças do Sistema Nervoso , Infecção por Zika virus , Zika virus , Animais , Feminino , Humanos , Camundongos , Placenta , Gravidez , Replicação Viral , Infecção por Zika virus/complicações
16.
Lancet Microbe ; 2(10): e527-e535, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34258603

RESUMO

BACKGROUND: Mutations accrued by SARS-CoV-2 lineage P.1-first detected in Brazil in early January, 2021-include amino acid changes in the receptor-binding domain of the viral spike protein that also are reported in other variants of concern, including B.1.1.7 and B.1.351. We aimed to investigate whether isolates of wild-type P.1 lineage SARS-CoV-2 can escape from neutralising antibodies generated by a polyclonal immune response. METHODS: We did an immunological study to assess the neutralising effects of antibodies on lineage P.1 and lineage B isolates of SARS-CoV-2, using plasma samples from patients previously infected with or vaccinated against SARS-CoV-2. Two specimens (P.1/28 and P.1/30) containing SARS-CoV-2 lineage P.1 (as confirmed by viral genome sequencing) were obtained from nasopharyngeal and bronchoalveolar lavage samples collected from patients in Manaus, Brazil, and compared against an isolate of SARS-CoV-2 lineage B (SARS.CoV2/SP02.2020) recovered from a patient in Brazil in February, 2020. Isolates were incubated with plasma samples from 21 blood donors who had previously had COVID-19 and from a total of 53 recipients of the chemically inactivated SARS-CoV-2 vaccine CoronaVac: 18 individuals after receipt of a single dose and an additional 20 individuals (38 in total) after receipt of two doses (collected 17-38 days after the most recent dose); and 15 individuals who received two doses during the phase 3 trial of the vaccine (collected 134-230 days after the second dose). Antibody neutralisation of P.1/28, P.1/30, and B isolates by plasma samples were compared in terms of median virus neutralisation titre (VNT50, defined as the reciprocal value of the sample dilution that showed 50% protection against cytopathic effects). FINDINGS: In terms of VNT50, plasma from individuals previously infected with SARS-CoV-2 had an 8·6 times lower neutralising capacity against the P.1 isolates (median VNT50 30 [IQR <20-45] for P.1/28 and 30 [<20-40] for P.1/30) than against the lineage B isolate (260 [160-400]), with a binominal model showing significant reductions in lineage P.1 isolates compared with the lineage B isolate (p≤0·0001). Efficient neutralisation of P.1 isolates was not seen with plasma samples collected from individuals vaccinated with a first dose of CoronaVac 20-23 days earlier (VNT50s below the limit of detection [<20] for most plasma samples), a second dose 17-38 days earlier (median VNT50 24 [IQR <20-25] for P.1/28 and 28 [<20-25] for P.1/30), or a second dose 134-260 days earlier (all VNT50s below limit of detection). Median VNT50s against the lineage B isolate were 20 (IQR 20-30) after a first dose of CoronaVac 20-23 days earlier, 75 (<20-263) after a second dose 17-38 days earlier, and 20 (<20-30) after a second dose 134-260 days earlier. In plasma collected 17-38 days after a second dose of CoronaVac, neutralising capacity against both P.1 isolates was significantly decreased (p=0·0051 for P.1/28 and p=0·0336 for P.1/30) compared with that against the lineage B isolate. All data were corroborated by results obtained through plaque reduction neutralisation tests. INTERPRETATION: SARS-CoV-2 lineage P.1 might escape neutralisation by antibodies generated in response to polyclonal stimulation against previously circulating variants of SARS-CoV-2. Continuous genomic surveillance of SARS-CoV-2 combined with antibody neutralisation assays could help to guide national immunisation programmes. FUNDING: São Paulo Research Foundation, Brazilian Ministry of Science, Technology and Innovation and Funding Authority for Studies, Medical Research Council, National Council for Scientific and Technological Development, National Institutes of Health. TRANSLATION: For the Portuguese translation of the abstract see Supplementary Materials section.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , Brasil/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , SARS-CoV-2/genética , Estados Unidos , Vacinação
17.
Emerg Infect Dis ; 27(6): 1737-1740, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33871331

RESUMO

We documented 4 cases of severe acute respiratory syndrome coronavirus 2 reinfection by non-variant of concern strains among healthcare workers in Campinas, Brazil. We isolated infectious particles from nasopharyngeal secretions during both infection episodes. Improved and continued protection measures are necessary to mitigate the risk for reinfection among healthcare workers.


Assuntos
COVID-19/diagnóstico , Pessoal de Saúde , Reinfecção/diagnóstico , Reinfecção/virologia , SARS-CoV-2/isolamento & purificação , Eliminação de Partículas Virais , Adulto , Brasil/epidemiologia , COVID-19/epidemiologia , Feminino , Humanos , Pessoa de Meia-Idade , Reinfecção/terapia
18.
Placenta ; 101: 204-207, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33011564

RESUMO

To investigate the role of TYRO3, AXL and TIM1 receptors in the Zika virus (ZIKV) cycle, we determined their mRNA expression in different placental sites of ZIKV infected tissue during pregnancy. Unexpectedly, the ZIKV infection was not related with mRNA upregulation of these receptors or changes in expression of type I and III interferons in different placental sites. Instead, a decrease of TYRO3 mRNA expression was observed in positive sites of ZIKV positive placentas in comparison to negative sites. The basis of this downregulation can help to understand how ZIKV persists in placental tissue during pregnancy.


Assuntos
Receptor Celular 1 do Vírus da Hepatite A/metabolismo , Placenta/enzimologia , Complicações Infecciosas na Gravidez/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Infecção por Zika virus/metabolismo , Estudos de Casos e Controles , Feminino , Interações Hospedeiro-Patógeno , Humanos , Interferon Tipo I/metabolismo , Interferons/metabolismo , Placenta/imunologia , Placenta/virologia , Gravidez , Complicações Infecciosas na Gravidez/imunologia , Complicações Infecciosas na Gravidez/virologia , Zika virus/fisiologia , Infecção por Zika virus/imunologia , Interferon lambda , Receptor Tirosina Quinase Axl
20.
Cell Metab ; 32(3): 437-446.e5, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32697943

RESUMO

COVID-19 can result in severe lung injury. It remained to be determined why diabetic individuals with uncontrolled glucose levels are more prone to develop the severe form of COVID-19. The molecular mechanism underlying SARS-CoV-2 infection and what determines the onset of the cytokine storm found in severe COVID-19 patients are unknown. Monocytes and macrophages are the most enriched immune cell types in the lungs of COVID-19 patients and appear to have a central role in the pathogenicity of the disease. These cells adapt their metabolism upon infection and become highly glycolytic, which facilitates SARS-CoV-2 replication. The infection triggers mitochondrial ROS production, which induces stabilization of hypoxia-inducible factor-1α (HIF-1α) and consequently promotes glycolysis. HIF-1α-induced changes in monocyte metabolism by SARS-CoV-2 infection directly inhibit T cell response and reduce epithelial cell survival. Targeting HIF-1ɑ may have great therapeutic potential for the development of novel drugs to treat COVID-19.


Assuntos
Betacoronavirus/fisiologia , Glicemia/metabolismo , Infecções por Coronavirus/complicações , Complicações do Diabetes/complicações , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Monócitos/metabolismo , Pneumonia Viral/complicações , Adulto , COVID-19 , Linhagem Celular , Infecções por Coronavirus/metabolismo , Complicações do Diabetes/metabolismo , Diabetes Mellitus/metabolismo , Feminino , Glicólise , Humanos , Inflamação/complicações , Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade , Monócitos/virologia , Pandemias , Pneumonia Viral/metabolismo , Espécies Reativas de Oxigênio/metabolismo , SARS-CoV-2 , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...